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Infinite Sums of Roots for a Class of Transcendental 
Equations and Bessel Functions of Order One-Half 

By N. Liron 

Abstract. The roots of Bessel functions of order one-half are special cases of roots of 
transcendental equations of the form tan z = A(z)/B(z), where A(z), B(z) are polynomials 
and A(z)/B(z) is odd. We prove that the function f(z) = B(z) sin z - A(z) cos z, f(z) even or 
odd, satisfies the conditions of Hadamard's factorization theorem, and derive recurrences 
for sums of the form SI = *- 1 aT 2t, 1 = 1, 2, * * *, where the ak's are the nonzero roots 
of f(z). We also prove under what conditions on A(z) and B(z) is S1 = ir212r(2l + 2) or 
S1 = Wv-212r(21 + 2)(221+2 - 1), where r is the Riemann zeta function. We prove that, 
although Bessel functions of positive half-order, JI+1/2, have only real roots, perturbation of 
any one of its coefficients introduces nonreal roots for 1 > 2. 

1. Introduction. We are interested in sums of the form 
to 

(1.1) =Sk -E 21c-2 
n-I 

where the a,,'s are the nonzero roots of a function of the type 

(1.2) f(z) = B,,(z) sin z - An(z) cos z, 

where Bn(z), A"(z) are polynomials of order m, n, respectively, m 5 n, and f(z) is 
either even or odd. Since the roots occur in pairs, + a, we take only one of each pair. 

Two special cases of (1.2), B.(z) = 1, A,n(z) = kz, and B"(z) = z, A"(z) =-k, 
k a nonzero real constant, have been treated in [1] using Sturm-Liouville theory. 

We shall show that (1.2) has a discrete sequence of roots, a,n, with a!2 - Co. As a 
special case, we get the Bessel functions J1+112(z) and JL1-1/2(z), for I > 0. For J1+1/2(Z) 
we prove, by using S0, that if I > 2, although Ih+112(Z) itself has only real roots, 
perturbations of any one of its coefficients (written in the form (1.2)), introduce 
nonreal roots. 

2. Main Theorem. 
LEMMA 1. Let 

(2.1) f(z) = Bm(z) sin z - An(Z) COs Z, m 5 n, 

where Bm(z), An(z) are polynomials of order m, n, respectively, which have no common 
root. 
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Let z = x + iy. Then 
(1) There exists a Y > 0, such that if y > Y, f(z) has no roots. 
(2) In any strip {xl ? L < co, there can only be a finite number of roots of f(z). 
Proof. Part (1). f(z) = 0 iff 

(2.2) tan z = An(z)/Bm(z), 

(including both sides = az). For Izl >> 1, 

(2.3) 1 An(z)/B(z)I Clzl"-- = Clzlk, 

where k = n - m and C > 0. If lzl >> 1, we must therefore have 

(2.4) Itan zl Czl* 

if z is a root. But 

tan x + i tanh y tan z = tan(x + jy) = 1-i tan x tanh y 

sin x cos x (1 - tanh2 y) + i tanh y 
CO2 X i2 X tn2 y Cos2x + sin2xtanhy 

from which it follows that 

(2.5) Itanhyl Itanzl 2 + 2 t I y' 

i.e., tan z is bounded away from zero and infinity, if y 5 0. If jyj >> 1, then (2.5) 
implies that Itan zl 1. But if jyj >> 1, then Iz? >> 1, and (2.4) holds for a root, i.e., 
Itan zl >> 1 for k > 0, and Itan zl << 1 for k < 0. 

This concludes the proof of (1). 
Part (2). Suppose we had an infinite number of roots for jxl ? L < c. By Part 

(1), they would be in a bounded domain, and would have an accumulation point 
other than infinity. Since f(z) is an analytic entire function, it follows that f(z)- 0, 
by Taylor's Theorem. This contradiction proves Part (2). 

Remark. It follows from (2.4) that we do have an infinite sequence of roots, 
tending to i co on the real line, with the asymptotic values nr for k < 0 and 
(n + D)r for k > 0, n an integer. 

LEMMA 2. Let X order of f(z). Then X < 1. 
Proof. Let M(r) = Max,,,- If(z)j. Then, M(r) < (n + m)C1r"m"e', for r > 1, 

and C1 is the largest coefficient in absolute value of A^(z) and Bm(z). 

log M(r) < log[(n + m)C1] + (m + n) log r + r 

< C2r, for r large enough and C2 > 0. 

So that, log log M(r) < log C2 + log r, and therefore, 

log log M(r) O 1 + lrn log C2 1 
X = urn sup logr ii 

,<,C0 log r - ,b0logr 

THEOREM 1. Let f(z) = Bm(z) sin z - An(z) cos z, where Bm(z), An(z), are poly- 
nomials of order m, n, respectively, one being even and the other odd. Then 
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(2.6) f(z) = COZ (1 -Z2/2) 
k-I 

where ak are the roots of f(z) = 0, such that Ia,I <? 1a21 < < lal < * * * q is the 
multiplicity of the root z = 0, and CO f 0 "'(O)lq!. 

Proof. From Lemma 1 and the following remark we get that there exists an 
infinite sequence of roots of f(z) = 0, accumulating only at infinity. Also, the roots 
occur in pairs ?ia. By Hadamard's factorization theorem [2, p. 22], we can write 

coD 

(2.7) f(z) = Co exp{g(z)}zI II (1 - Z2/aC2) Co 7 0, 
k-1 

where q! CO = j')'(0), and g(z) is a polynomial in z of order < X, with g(O) 0. 
By Lemma 2, X < 1, and we get 

(2.8) g(z) = az. 

Since f(z) is even or odd, we get that q must be even or odd with f(z), and exp {g(z)} = 

exp {g(-z)}, i.e., az = -az by (2.8), or a = 0, which proves (2.6). 

3. Recurrences and Special Cases of Sk. Rewrite f(z) in Theorem 1 as 

(3.1) f(z) = b1+2m(z) sin z- a,+2.(z) cos z, 

where 

(3.2) bi+2m(Z) ZZ bkZ = Z Bm(Z2)s bo 7 0, bm ? O, 
k-0 

and 

(3.3) a,++2.(Z) = z akz2k = z'An(z2), ao 0 0, a, # 0, 
k-0 

and I + p is an odd integer. 
Since we are interested in the nonzero roots of f(z), we can divide by bozMin(' 

The two basic cases are therefore: 

(3.4) f(z) =Bm(Z2) Sinz -z' A.(z2) cos z, r = 2t + 1 > 0, 

and 

(3.5) f(z) = z'Bm(Z2) sin z - A"(z2) cos z, r = 2t + 1 > 0, 

with bo = 1 in both cases. 
Case 1. Consider f(z) as in (3.4). Write 

00 

(3.6) B(z2) sin z = E c z28+1 
J-0 

00 

(3.7) A Xz2) cos z = E d,Z28, 

from which we get 
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m 

Cs - (-1= , (-1)'bk/(2s - 2k + 1)!, 
(3.8) k-0 

n 

d. - (--) E 
(-l)kak/(2s- 2k)!, S = 0, 1, 2, 

k-0 

Substitute (3.6), (3.7) into (3.4) to get 
co 00 

(3.9) f(z) = c.z2a+1 E dZ2s+ 
-0 J-0 

and by (2.6) we can write 

f(z) = Coz I ( k1 - /c4), 
kw1 

(3.10) where C0 = co, q = 1 for r > 1, 

C0 = c. - di, q = 21 ? 1 for r = 1, c, - di 0, 

i = 0, 1, , i - 1, and ci- di 0. 

Take the logarithmic derivatives of (3.9), (3.10), equate, and multiply by zf(z), f(z) 
as in (3.9) to get 

00 co 

1Z (2S + 1)C,2s1 - 
I d (2s + r)z2'+r 

(3.1 1) 8-O a-0 

q [-2 
E SSZ2*+2l r1 C. 2+1 _ dJZ2s+r 

8 0 a-0 J 0 

or, after rearranging, and dividing by 2, 
co J oo 

Z+ Sk [C= - k [s + 1 - (q - 1)/2]CJ + 1 Z 

(3.12) 8-0 k-0 8-0 

oo 

+ Z: [s + 1 - (q -r)2]d,+,z2s+2+r 
J-0 

with d, = 0 for j < 0. The coefficient of z on the right-hand side is 

(q - 1)[co - doS3,,]/2 = 0 by (3.10). 

Equate coefficients of z2"+3 in (3.12) to get 

(3.13) ' Sk[CI-k - dl-t-k1 = -[I + 1 (q - 1)/2][cl+l -di+,_j] 

1 0,1,2, 

Case 1.1: t > 0. In this case q = 1 and (3.13) becomes 

(3.14) E Sk[cl_k - dl=t = -(I + l)[c1+j - dj+1_.], I - 0, 1, 2, 
k-0 

from which we obtain, as special cases 

(3.15) SO = - b, + ao t ,, 
S1 = b-2b2 + + [2a1 - ao(2 + 2b, - ao)]31,1 + 2a01, 2 
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THEOR1M 2. Let bk = O, k = 1, 2, , p - 1, and b, 0 0. Define 

(3.16) S= -212 (21+2)+ Fl, 1= 0, 1, 2, * 

where i(s) = n n- is the Riemann zeta function. Then 

(3.17) F1 = 0, I < Min(t - 2, p -2), 

(3.18) F1 = (I + 1)[ao5z,1_1 - b3 61,21], I = Min(t- 1, p- 1). 

Proof. If 1 + 1 < t then (3.14) becomes 

(3.19) SkC = -( + 1C)c + 1 
k-0 

If also I+ 1 < p, wegetfrom(3.8) thatfors < I+ 1, 

ca =(1)8 bo( - = 
_ 8 

C8 = (-1) (2s + 1)! (2s + 1)! 

So that if 1 ? Min(t - 2, p - 2), then (3.14) takes the form 

(3.20) - (_(1)2S + I 
-O(21 - 2k + 1)! 2+3) 

which is equation [1, (21)], for the parameter k = 0. But in this case [1, (24)], we 
have S, Jr 2l~2(21 + 2), i.e., (3.17). If I = Min(t - 1, p - 1), then (3.14) is 

X SkCZ.-.k = -(I + 1)[c1+1 d-51,9-1 
k-O 

or 

( 1)1~S = q + 1)F() b61..,.1 + ao611l*1 
0 (21-2k + 1)! (21 + 3)! v .L] 

(3.18) now follows from (3.16), (3.17) and (3.20). 
Case 1.2: t = 0. In this case, i = (q - 1)/2 (see (3.10)), and (3.13) is 

(3.21) E Sk[CZ_A - dl_k] - -[1 + 1 i -[cI+- di+j. 
k-O 

From (3.10), cj-di = 0 for j < i, and (3.21) is an identity, 0 = 0, if I < i. For 
I _ i, we have 

E Sk(CI-k - d1-k) = -(I + 1 - i)[cl+1 -d +j, 
k-0 

or, replace I - i by 1, to get 

(3.22) E Sk[Cl+i-k- dl+i-k] = -(I + 1)(c1+j+j dl+i+-), 
k-O 

1= 0,1,2, 

As special cases, we have 

(3.23) 0 = - = c i+ d,+1 2 Ci+2- 
ci - Lic. - diJ ci - d 
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A theorem similar to Theorem 2, for this case will be given in Section 4. 
Case 2. Consider now f(z) as in (3.5). From (3.6), (3.7), (3.8), we get 

co co 

(3.24) f(z) = Z E2+l+r _ 2 d Z28+ 
8-0 s-0 

and by (2.6), we write 

(3 .25) f(z) = COz II (1 - z2/a2) 
k-1 

with C0 -ao, q = 0. Repeat the same process as before to get 

co 8 co 

E z2s+1 , Skd-k E Z 
2 

SkC8-k 
8-0 k-0 8 0 k-0 

- (S + 
I 

)C8Z28+r (S + l)d Z2#+1 
8-0 8- + 

which yields the recurrence relation 

(3.26) E Sk[CI-t-1-k dl-k] = -(I + 1)[cl-g - di+j], I = 0, 1, 2, 
k/0 

As special cases we get 

So - - 
a 

+ - tI 
(3.27) 

2 ao ao 

1a 2 2a2 [2 _ _ 1 
+ 

a 
+ + -22a, +2b1 5j,, + 25j,. 6 ao ao 3ao ao ao 

The problem in [1, Section 6] is a special case of this, with t = 0, ao = -k 

a, = bi = 0 for 1 > 0. In this case, we get from (3.26), (3.8) and bo = 1, 

(3.28) ~ ~ - (-1)3(21 -2s- k) 21+2 - k 
(-1 (21 2s)! S8 2[(21 + 1)!] 

which coincides with [1, (36)] for S. T,(k), s = 0, 1, 2, - 

4. Bessel Functions of Order One-Half. The Bessel function Jl+112(z), 1 > 0, 
is given by [3, p. 298], 

(4.1) J +1/2(Z) = [R 1 , /2(z)sin z - 1 ,3/2(Z)COS Z], 

where [3, p. 296], 

(l/2 1- n' r(v + I - n) (1-12 
(4.2) R I,(z) = r(v + n)_I2Z 

Also, [3, p. 40], 

(4.3) JI+l1/2(Z) = (jZ)I / k! r2 + Ek+ 3/2) - Z1+1/2P(z), where P(O) $ 0. 

By (4.1), (4.3) we get 
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(4.4) (7r/2)12 z21 IP(z) = [z1R ,I12(z)]sin z - [z-1R 1.-,3/2(z)] z COS Z. 

Now, zIR1.1/2(z) = 2gl ,1/2(4z2), and zI R1.1312(z) = 2'-g1_1,/2(4z2), where 
/21 (I _ -k r(v + I-k + 1) rk 

(4.5) g1,,(M = (E k / P('k l 

are the modified Lommel polynomials [3, p. 303]. 
Since 

2~ g1,12(0) 21r(l + 4) 21-ir(l + 1 = 

2g91,-12(0) =22r( 2) and 2'-1g1.1,1/2(0) = 2P,(41)=2(0) 

we get that 

rP(4i) O1/2 21+1 
-l(z) 21r(l +4) Z P(Z) 

(4.6) 2r(21+2) 1(2) l+l/2( 2'P(l + 4) ~ ~ I +1/(Z 

B.(z2) sin z -z A"(z2) cos z, 

is of the form (3.4), with r = 1, bo ao = 1, 

(4.7) Bm(Z2) = r(l) 2gl/(4z) 

and 

(4.8) An(2) = 1(+ 1) 

where 

(4.9) n mr= (I- l)/2, 1 odd, n= 1/2, n = m 1, I even. 

We can therefore apply the results of Section 3 to J1 +112(Z), I> 0. It is well known 
[3, p. 482] that the Bessel function J,(z) has only real zeros for v > -1, and this is 
therefore true for J1+112(Z), 1> 0. The following theorem is therefore of interest. 

THEOREM 3. If in J1 +1/2(z) for I > 2, we perturb any one of the coefficients in 
R, 1/2(z) or Rl1. 3/2(Z), the resultant function has nonreal zeros. 

To prove this theorem, we shall first prove two lemmas which are of interest 
themselves. 

LEMMA 3. The coefficients bN, bl, ** , bin, ao, al, ... , an, of (4.7), (4.8) are uniquely 
determined by the following set of linear nonhomogenous equations 

(4.10) bo0- 1, c i = di, i = 0,1, ... I,1- It 

where cj, di are defined as in (3.8). 
Proof. bo = 1 is a condition of (3.4), which is satisfied by f1(z) in (4.6). From 

(3.10) we have 

(4.11) f1(z) = C0zq II (1 -_z2/a2) = zap 
k-k 
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where P,(O) $ 0, and q = 2i + 1 if c; - =0 for j= 0, 1, i ,i-1, and 
c. -di # 0. From (4.6), f 1(z) = Z21 1P2(Z), with P2(0) $ 0. It follows that q-21+1, 
and therefore i = 1, and (4.10) is satisfied. The number of equations in (4.10) is I + 1, 
and the number of unknowns (counting bo) is n + m + 2 which by (4.9) is equal to 
I + 1, so that (4.10) is a set of I + 1 nonhomogenous linear equations in I + 1 
unknowns. For uniqueness, see Appendix. 

LEMMA 4. Let bo (= 1), big ... * bms 'O, a, *. , * adn, be the (unique) solution of (4.10). 
Let b, = ba + e, a., a, + 8, 0 < s ? m, and b, = b,, ai = di for j $ s. [If n = 
m - 1, see (4.9), then am 8 = 0.] Let 

12F;Lk (4.12) fa(z, s, ef, 8) - b bkz sin z - z E akz COS Z 
bO_ kO k-0 

and let S,(s, e, 6) denote the sums of the nonzero zeros (1.1) of f,(z, s, E, 6). Then 

(4.13) S,(s, C, 0) = 7r2i2 (2j + 2), i _ I - s - 2, 

and 

(4.14) Sl(s, 0, 8) = r-2i-2(22i+2 - 1)(2j + 2), j ? 1 -s - 2. 

In particular, when j 0, (4.13) holds for I > 2, and I = 2, s = 0, and (4.14) holds 
forI> 2. 

Proof. f I(z, s, e, 8) is of the form (3.4), with r = 1. It follows from (3.8) and (4.10), 
that c, - d = 0 for j < s, and 

-s d, (- 1)'[ (2 (-1)(bk(e1)k - ( -1I)88] 
(4.15) k=0 (2s - 2k + 1)! + ( k-O (2s 2k)! 

=e- (=e,ifs= mn+ 1). 

For e 4 8, we can write, by (3.10), 

(4.16) fI(z, s, e, 8) (- 8)Z 1 II (1 - 
k-i 

and by (3.22) we have 

(4.17) L Sh(s, e, 8)[C,+i.k - d,+i-k] =-( + 1)[C,+1+1 - 
k-O 

j = 0, 1, 2, 

If s + t < 1 - 1, then by (4.10) and (3.8), 

(4.18) c,+t - d+ = (- 
' 

1) ( 1t) 
(2t + 1)! (2) 

and so for s + j + 1 < I - 1, (4.17) becomes 

(4.19) ? Sl(S' - B = (+ 1) ( ) ' 
k-0 ~ 'L (2 - 2k + 1)! J(2j1+3)! 

which is equation [1, (21)] with the parameter k = 8/e $ 1. In particular, if e 0 0, 
a = 0, this is [1, (21)] with k = 0, and so by [1, (24)], we have (4.13). If 8 0 0, e = 0, 
this is [1, (21)] with k -+ c, and so by [1, (28)] we have (4.14). Since s _ m, it follows 
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from (4.9) that when j = 0, (4.13) holds for I > 2 and I = 2, s = 0, and since s < n 
in (4.14), (4.14) holds for I l 2, ifj = 0. 

Proof of Theorem 3. The nonzero zeros of Jl+1/2(Z) are the same as those of 
fl(z) in (4.6), and perturbing a coefficient of Rl,,I2(z) or R._1,3/2(z) is equivalent to 
perturbing a coefficient of Bm(Z2) or A"(z2) in (4.6). We can therefore look at the 
function fj(z). Let bi (j = 1, 2, m , i), ai (j = 1, 2, * , n) be defined as in Lemma 
4. Since I > 2, we have by (4.13) 

(4.20) S(e, 0) = -2(2) = d 0, 

and by (4.14), 

(4.21) SO(s, 0, 8) = gr~23r(2) = 2, a 0 0. 

From (4.20) it follows that 

(4.22) lim S(S, e, 0) =6 

The roots =a1, ,a2, ..a depend continuously on e. If e 5 0 (5 = 0), we have from 
(4.16) that the multiplicity at zero is of order 2s + 1, but when e = 0 (5 = 0), we 
have from (4.6) that the multiplicity at zero is 2! + 1. Since the roots occur in pairs 
4a, we must have 

(4.23) lima- = 0, j = 1, 2,** , -s. 
f 0 

But 

6 SO(S, C, 0) = 2+ a 2 
k-1 k-l-a+1 

and 

lim E ak 2(1+3 
e-*0 kc-1-8+1 2(21 + 3) 

see [3, p. 502] or [4]. We therefore get that Q(e) = ; a.2 stays finite as e- 0; 
If all a! in Q(e) tended to zero through positive values, then rimn.Q(e) = c. So 
that, when e 0 0 (I |I << 1), we must have at least one root, a1, for which a 2 is not 
positive, i.e., a; is nonreal. The same argument applied to Sl(s, 0, 6) by (4.21) again 
yields that if a 0 0 (I aI << 1) ye must have nonreal roots, completing the proof. 

Remark. From the proand Lemma 4, it is obvious that Theorem 3 holds also 
when I = 2, s = 0. (Ret l=2, we only have ao, bo and b1, and the theorem does 
not apply to b1.) 

There are thrK cases which Theorem 3 does not cover, if I + I > 0; the cases 
I = 0,! = 1 d l = 2, s = 1 (only b1). The case l = O is not of the form we are 
discussin ndeed (7rz/2)1/2'J/2(Z) = sin z, so we only have bo = 1, and obviously 
the ro do not depend on changing bo to any nonzero constant. The other two 
casare indeed different from the cases covered by Theorem 3, and we have the 
f4lowing. 

THEOREM 4. Under the same definitions as in Lemma 4, 
(1) fl(z, 0,-e, 0) and f1(z, 0, 0, 8) have only real zeros for e > 0, 6 > 0, and a 

pair of imaginary roots for e < 0, 6 < 0 (IeI << 1, I8S << 1). 
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(2) f2(z, 1, -e, 0) has only real roots for e _ 0, and a pair of imaginary roots for 
e < o (IE << 1). 

Proof. Part (1). This is the problem of [1, Section 1], with the parameter k = 
ao/bo there, and (1) follows. 

Part (2). Note that 

(4.24) f2(z)= (1 - 3z2)sinz - z cosz. 

If we look at the function g(z) = (k -k2z2) sin z - z cos z, the roots, ? a of g(z) 
arise from the Sturm-Liouville system 

u" + a2u =O, 

(4.25) Cu(O) + Du'(O) = 0, 

Eu(1) - Fu'(1) 0, ED + CF # 0, 

where k, = CE/(ED + CF), k2 = FD/(ED + CF). 
By Sturm-Liouville theory, a2 are all real, and therefore f2(z, 1, -C., 0) may have 

either real or imaginary roots. An imaginary root z = -ix, x > 0, of f2(z, 1,-e, 0) 
should satisfy the equation 

(4.26) y1(x) =Y2 , 

where y,(x) = tanh x, y2(x) = x/(I + cx2), c = I + e. Since I - s = 2 - 1 = 1 
only one such x > 0 can exist (for e small enough). yi(O) = Y2(0) = 0 and 
lim-,_y1(x) = 1, limz_ y2(x) = 0. As y1(x), y2(x) may intersect only once, for x > 0, 
it is necessary and sufficient that y2(x) > y1(x) in some interval (0, 2), for the existence 
of a positive solution of (4.26). Checking derivatives at zero, one finds Y i)(0) 2 
for j = 0, 1, 2, and y 3)(0) =-2, y23)(0) = -6c, and therefore, there exists a positive 
root of (4.26) iff -6c > -2, i.e., c < 31. This concludes the proof of Part (2). 

To get an idea of the asymptotic behavior of the roots which split away from 
zero when E (or 8) tend to zero, note that by the definitions, lim _0 fj(z, s, C, 0) = 

limb5 0Of (z, s, 0, 8) = fJ(z). From (4.16), 
ao 

f1(z, s, E, 0) = (Z28+1 H (1 
Z 

z2/a2) 
k=1 

(4.27) z21+1 
Z2 

(1 Z /a) 
I 

(1/Z2 _ 1/a2) 
kl-8+1 k-1 

Z21+1 ZJ ( 2 - 2/a2) 1(1Z- /2)(_ 1)l-J -2 

k=l-s+l k=1 k=1 

Take the limit e -O 0 of (4.27) and use (4.23), (4.6), the continuous dependence of 
the roots on E, and (3.10), to get 

i-2 
fl(z) = fl(z) lim (- 1) 8e(c1 -di)-' II ak2 

f 0 k=1 

or 
1-8 

lrn Jk k2 = (-1)d(Cl - d). 
f O k-1 
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From (4.3), (4.6) we get that 

(4.28) c - di (21 + 1)-1[211!/(21)!1]2 

and we get 
I-a 

(4.29) lir ak 2= (-1)l8E(21 + 1)-1[21l!/(2l)!]2 
e-0 k-1 

Again, when e 0, a F 0, (4.29) holds with e replaced by (-6). 

Example. 1 = 3, s = 1, e < 0. By Theorem 3, we know we must have at least 
one nonreal root. By (4.29), lim,,0eal2 a2 = 1/1575, and from Theorem 3, we 
have lim_.Oaa2 +a22 = - .2If I l<< 1, we must therefore have a2 = a2 > 0, and 
_-2 = a2 < 0, and so the two double roots at zero separate to 4 a (a > 0) along 
the real axis, and ?i4i3 (fi >0) along the imaginary axis. For jej << 1, a2p2 1575(- e), 
-A a - a2 175(-E), or a ~ 40 IeI1/2 + 0 

We have [3, p. 298], 

(4.30) (-1)' J-1112(Z) (2/rrz)l12 [RI -1 3/2(Z) sin z + RI .1/2(Z) COS Z], 

and so 

2 (4) r (-l)1(7 (3 zI+1/2J-I/2(Z) I > 0, 

is of the form (3.5) with r = 1, m = n = (1- 1)/2 for l odd and n = 1/2, m = n - 1 
for 1 even, and the coefficients are given by 

(4.31) bi ai, a7 = -bi, j = 1, 2, n, n, 

where ai, b1 (j = 1, * , n) are the solutions of (4.10). 
Since r = 1, (3.26) holds with t = 0, and from (3.27), (4.31), we get 

(4.32) S0 = -2 bl, S1 = 2 + b1 + 2b2 + 2b, - 2a. 

Appendix. We want to prove that there exists a unique solution b0, b. , 

ao, * * , an to the set of equations 

bo = 1, 

(A. - =d ( 1)8' (1)kbk 
n 

1);ak 1 0, IA (2s-2k + 1)! kO (2s- 2k)! 

s= 0,1,2, *. ,l- 1, 

m = n = (I - 1)/2, for I odd, and in = 1/2, n = m - 1 for I even. 

Note that we can replace n by m, and add the equation am = 0, for I even. We know 
that for any 1 > 0 there exists a solution to (A.1) given by the coefficients in (4.7), 
(4.8). From (3.9), (A.1) holds if 

m n 

(A.2) f(z) = sin z E bkz - z cos z akz, (bo = 1), 
k=O k=0 

has a zero of multiplicity at least 21 + 1 at zero, and actually, for the solution we 



780 N. LIRON 

know it is exactly of multiplicity 21 + 1, by (4.28). Thus, (A.1) admits a unique 
solution iff any other choice of the coefficients, bo (= 1), b, * * * bi, ao, a,, * * * , an, 

would have the corresponding function f(z) in (A.2), with a zero of multiplicity less 
than 21 + 1, at zero. We therefore rephrase what we want to prove as follows: 

THEOREM 5. There exists a unique set of coefficients bo, * * * , bin, ao, * , am such 
that, at zero, f(z), defined by (A.2), has a zero of multiplicity 4m + 1 (I = 2m) if we 
demand a. = 0, and multiplicity 4m + 3 (I = 2m + 1) otherwise, and such that 
bo= 1. 

Proof. By induction. 
(1)m = 0. From(A.1),bo= lforl= O,andao = bo = lforl= 1,andthe 

solution is unique, so the theorem holds. 
(2) The induction hypothesis is that the theorem is true for m = 0, 1, *., i. 

We want to prove it for m = i + 1. Note that the first two equations in (A.1) are 
always bo = 1, ao = bo, and so 

(A.3) bo = ao = 1 for all m > O. 

Part a. Let bog ... , bi+l, dot ... , di, ai + [=0], and bo, ... , bi+,1 ao, .. . 
ai+l [=O] be two distinct solutions of (A.1) for I = 2i + 2. It follows from (A.2) 
and (3.9) that we can write 

i+1 i 

(A.4) fl(z) = sin z S bkz" - z cos z Z a Z2b = R 
k-0 k-0 

and 
i+l 

(A.5) f2(z) = sin z bZ - z cos z 2 az2 = z4i+5R2(Z2). 
k-0 k-0 

Subtract (A.5) from (A.4) to get 
i+1 i 

(A.6) sin z E (b-b - z cos Z (z _ a- 2 = z4+5[RR (Z2) R (Z2 
k-0 k-0o 

and, by (A.3), we must have 

(A.7) aO aO= bo= bo 1. 
From (A.1) it follows that b -bk = O for all k ?< j-1 < m + 1 iff a,, = 0 
forallk < j-1 < m + 1. Supposebk-b, = Ofork = 0, 1, 2, **, j- 1, and 
bi - b1 0 0. j 2 1 because of (A.7), and j < i since the two solutions are distinct, 
and di+, = ai+1 = 0. Divide (A.6) by z2; to get 

j+l-j i-i 

sin z E [bk+ - jZ21,- Z cos z P (k+ i - ak+ j]Z2 
(A.8) b-0 b-0 

z4i+5-2i [RI (Z2))-R2(Z)] 

Divide through by bi - bi (0O), and the left-hand side of (A.8) is of the form (A.2) 
with 0 : m ? i + 1 -j I< i, and am = 0. From the induction hypothesis, it follows 
that the left-hand side of (A.8) can have a zero of multiplicity at most 4m + 1 I 
4i + 5 - 4j at zero. But the right-hand side of (A.8) has multiplicity of at least 
4i + 5 -2j > 4i + 5 - 4j, a contradiction. Thus, (A.1) admits a unique solution 
for I = 2i + 2. 
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Part b. Let b0, , bi+l, o, ... * , ij and boy ... , bi+l, ao, * *, ajj+ be two 
distinct solutions of (A.1) for I = 2i + 3. Repeat the same process as in Part a to 
get the equation 

i+1-j i+1-j 

si z [k - bk+ - E [ak+ - ak +i]Z2k 

(A.9) k-0 k-0 

=Z 4i+7-2 [R3 (Z2) - R4(Z2)], 

and I < j ? m + 1. Again divide by b, - bi ($0), and get the left-hand side of 
(A.9) in the form (A.2) with 0 g m ? i + 1 - i. Since we do not require am = 0, 
we have by the induction hypothesis a zero of multiplicity at most 4m + 3 ! 
4i + 7 - 4j for the left-hand side of (A.9) at zero. The right-hand side has, at zero, 
a zero of multiplicity at least 4i + 7 -2j > 4i + 7 - 4j, since j 2 1, a contradiction. 
This concludes the proof. 
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